Треугольная шестиугольная призма из бумаги схема. Объём и площадь поверхности правильной четырёхугольной призмы. Алгоритм построения развертки призмы

  • 14.03.2020

Дано:
Пересечение пирамиды и призмы
Необходимо:
Построить развертку прямой призмы и показать на ней линию пересечения призмы с пирамидой .

Построение развертки прямой призмы намного легче, чем развертка пирамиды.

Построение развертки призмы

Построение развертки прямой призмы облегчается тем, что все размеры для развертки берутся с эпюр и нам не надо находить натуральные величины ребер призмы. Так как дана прямая призма, то боковые ребра призмы проецируются на фронтальную плоскость проекций в натуральную величину. Ребра оснований прямой призмы параллельны горизонтальной плоскости проекций и проецируются на нее также в натуральную величину.

Алгоритм построения развертки призмы

  • Проводим горизонтальную прямую.
  • От произвольной точки G этой прямой откладываем отрезки GU, UE, ЕК, КG равные длинам сторон основания призмы.
  • Из точек G, U, ... восстанавливают перпендикуляры и на них откладывают величины равные высоте призмы. Полученные точки соединяют прямой. Прямоугольник GG1G1G является разверткой боковой поверхности призмы. Для указания на развертке граней призмы из точек U, E, K восставляют перпендикуляры.
  • Для получения полной развертки поверхности призмы к развертке поверхности пристраивают многоугольники ее оснований.

Для построения на развертке линии пересечения призмы с пирамидой замкнутых ломанных линий 1, 2, 3 и 4, 5, 6, 7, 8 пользуемся вертикальными прямыми.

Более подробно в видеоуроке по начертательной геометрии в Автокад

В основе геометрического тела – призмы лежат многоугольники, а каждая боковая грань – параллелограмм. Непосвященный, возможно, немного испугался. Но если вашего ребенка просят прийти на урок с призмой, вы, естественно, захотите помочь ему и объяснить, как сделать призму из бумаги.

Начнем с изготовления прямой призмы. В этой призме боковые ребра перпендикулярны основаниям. Наиболее проста в изготовлении своими руками призма из бумаги с тремя гранями, так как в ее основаниях лежат простейшие из многоугольников – треугольники. Изготовим «правильную» призму. У нее основания представлены равносторонними треугольниками.

Треугольная призма

Продумаем, какая по высоте будет наша треугольная призма из бумаги. Начертим прямоугольник-с одной стороной, равной высоте, а другой - равной длине периметру треугольника в основании. Полученный прямоугольник разделим параллельными прямыми на три равные части. От углов прямоугольника, находящегося в середине, циркулем проведем окружности с радиусом, равным стороне нашего треугольника в основании. Где окружности пересекутся за пределами первоначального прямоугольника, поставим точки и соединим их с центрами окружностей. Мы должны получить фигуру, изображенную в середине рисунка. Далее фигуру вырезаем с небольшими припусками для склеивания, сгибаем по имеющимся прямым линиям и получаем готовую призму.

По какому шаблону изготавливается призма из бумаги с четырьмя гранями, наглядно демонстрирует схема на рисунке.

Шестиугольная призма

Пример заготовки для пятигранной призмы представлен на рисунке. Здесь высота пирамиды 10 см, длина сторон у пятигранника в основании по 3 см. Похожим образом может быть изготовлена шестиугольная призма из бумаги, но в ее основании лежит шестиугольник.

Наклонная призма

Наклонная призма из бумаги представлена на этом рисунке. Ее боковые грани находятся под углом к основанию. Такую призму можно изготовить по шаблону-развертке.

В школьной программе по курсу стереометрии изучение объёмных фигур обычно начинается с простого геометрического тела - многогранника призмы. Роль её оснований выполняют 2 равных многоугольника, лежащих в параллельных плоскостях. Частным случаем является правильная четырёхугольная призма. Её основами являются 2 одинаковых правильных четырёхугольника, к которым перпендикулярны боковые стороны, имеющие форму параллелограммов (или прямоугольников, если призма не наклонная).

Как выглядит призма

Правильной четырёхугольной призмой называется шестигранник, в основаниях которого находятся 2 квадрата, а боковые грани представлены прямоугольниками. Иное название для этой геометрической фигуры - прямой параллелепипед.

Рисунок, на котором изображена четырёхугольная призма, показан ниже.

На картинке также можно увидеть важнейшие элементы, из которых состоит геометрическое тело . К ним принято относить:

Иногда в задачах по геометрии можно встретить понятие сечения. Определение будет звучать так: сечение - это все точки объёмного тела, принадлежащие секущей плоскости. Сечение бывает перпендикулярным (пересекает рёбра фигуры под углом 90 градусов). Для прямоугольной призмы также рассматривается диагональное сечение (максимальное количество сечений, которых можно построить - 2), проходящее через 2 ребра и диагонали основания.

Если же сечение нарисовано так, что секущая плоскость не параллельна ни основам, ни боковым граням, в результате получается усечённая призма.

Для нахождения приведённых призматических элементов используются различные отношения и формулы. Часть из них известна из курса планиметрии (например, для нахождения площади основания призмы достаточно вспомнить формулу площади квадрата).

Площадь поверхности и объём

Чтобы определить объём призмы по формуле, необходимо знать площадь её основания и высоту:

V = Sосн·h

Так как основанием правильной четырёхгранной призмы является квадрат со стороной a, можно записать формулу в более подробном виде:

V = a²·h

Если речь идёт о кубе - правильной призме с равной длиной, шириной и высотой, объём вычисляется так:

Чтобы понять, как найти площадь боковой поверхности призмы, необходимо представить себе её развёртку.

Из чертежа видно, что боковая поверхность составлена из 4 равных прямоугольников. Её площадь вычисляется как произведение периметра основания на высоту фигуры:

Sбок = Pосн·h

С учётом того, что периметр квадрата равен P = 4a, формула принимает вид:

Sбок = 4a·h

Для куба:

Sбок = 4a²

Для вычисления площади полной поверхности призмы нужно к боковой площади прибавить 2 площади оснований:

Sполн = Sбок + 2Sосн

Применительно к четырёхугольной правильной призме формула имеет вид:

Sполн = 4a·h + 2a²

Для площади поверхности куба:

Sполн = 6a²

Зная объём или площадь поверхности, можно вычислить отдельные элементы геометрического тела.

Нахождение элементов призмы

Часто встречаются задачи, в которых дан объём или известна величина боковой площади поверхности, где необходимо определить длину стороны основания или высоту. В таких случаях формулы можно вывести:

  • длина стороны основания: a = Sбок / 4h = √(V / h);
  • длина высоты или бокового ребра: h = Sбок / 4a = V / a²;
  • площадь основания: Sосн = V / h;
  • площадь боковой грани: Sбок. гр = Sбок / 4.

Чтобы определить, какую площадь имеет диагональное сечение, необходимо знать длину диагонали и высоту фигуры. Для квадрата d = a√2. Из этого следует:

Sдиаг = ah√2

Для вычисления диагонали призмы используется формула:

dприз = √(2a² + h²)

Чтобы понять, как применять приведённые соотношения, можно попрактиковаться и решить несколько несложных заданий.

Примеры задач с решениями

Вот несколько заданий, встречающихся в государственных итоговых экзаменах по математике.

Задание 1.

В коробку, имеющую форму правильной четырёхугольной призмы, насыпан песок. Высота его уровня составляет 10 см. Каким станет уровень песка, если переместить его в ёмкость такой же формы, но с длиной основания в 2 раза больше?

Следует рассуждать следующим образом. Количество песка в первой и второй ёмкости не изменялось, т. е. его объём в них совпадает. Можно обозначить длину основания за a . В таком случае для первой коробки объём вещества составит:

V₁ = ha² = 10a²

Для второй коробки длина основания составляет 2a , но неизвестна высота уровня песка:

V₂ = h (2a)² = 4ha²

Поскольку V₁ = V₂ , можно приравнять выражения:

10a² = 4ha²

После сокращения обеих частей уравнения на a² получается:

В результате новый уровень песка составит h = 10 / 4 = 2,5 см.

Задание 2.

ABCDA₁B₁C₁D₁ — правильная призма. Известно, что BD = AB₁ = 6√2. Найти площадь полной поверхности тела.

Чтобы было проще понять, какие именно элементы известны, можно изобразить фигуру.

Поскольку речь идёт о правильной призме, можно сделать вывод, что в основании находится квадрат с диагональю 6√2. Диагональ боковой грани имеет такую же величину, следовательно, боковая грань тоже имеет форму квадрата, равного основанию. Получается, что все три измерения - длина, ширина и высота - равны. Можно сделать вывод, что ABCDA₁B₁C₁D₁ является кубом.

Длина любого ребра определяется через известную диагональ:

a = d / √2 = 6√2 / √2 = 6

Площадь полной поверхности находится по формуле для куба:

Sполн = 6a² = 6·6² = 216


Задание 3.

В комнате производится ремонт. Известно, что её пол имеет форму квадрата с площадью 9 м². Высота помещения составляет 2,5 м. Какова наименьшая стоимость оклейки комнаты обоями, если 1 м² стоит 50 рублей?

Поскольку пол и потолок являются квадратами, т. е. правильными четырёхугольниками, и стены её перпендикулярны горизонтальным поверхностям, можно сделать вывод, что она является правильной призмой. Необходимо определить площадь её боковой поверхности.

Длина комнаты составляет a = √9 = 3 м.

Обоями будет оклеена площадь Sбок = 4·3·2,5 = 30 м² .

Наименьшая стоимость обоев для этой комнаты составит 50·30 = 1500 рублей.

Таким образом, для решения задач на прямоугольную призму достаточно уметь вычислять площадь и периметр квадрата и прямоугольника, а также владеть формулами для нахождения объёма и площади поверхности.

Как найти площадь куба


Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Необходимо построить развертки гранных тел и нанесения на развертку линии пересечения призмы и пирамиды.

Для решения этой задачи по начертательной геометрии необходимо знать:

— сведения о развертках поверхностей, способах их построения и, в частности, построение разверток гранных тел;

— взаимно-однозначные свойства между поверхностью и ее разверткой и способы перенесения точек, принадлежащих поверхности, на развертку;

— методы определения натуральных величин геометрических образов (линии, плоскости и др.).

Порядок решения Задачи

Разверткой называется плоская фигура, которая получается при разрезании и разгибании поверхности до полного совмещения с плоскостью. Все развертки поверхностей (заготовки, выкройки ) строятся только из натуральных величин.

1. Поскольку развертки строятся из натуральных величин, приступаем к их определению, для чего па кальку (миллиметровку или другую бумагу) формата A3, переносится задача № з со всеми точками и линиями пересечений многогранников.

2. Для определения натуральных величин ребер и основания пирамиды используем метод прямоугольного треугольника . Безусловно, можно и другие, но на мой взгляд, этот метод более доходчив для студентов. Суть его заключается в том, что «на построенном прямом угле откладывается на одном катете проекционная величина отрезка прямой, а на другом — разность координат концов данного отрезка, взятая с сопряженной плоскости проекций. Тогда гипотенуза полученного прямого угла дает натуральную величину данного отрезка прямой» .

Рис.4.1

Рис.4.2

Рис.4.3

3. Итак, на свободном месте чертежа (рис.4.1.а) строим прямой угол.

По горизонтальной линии этого угла откладываем проекционную величину ребра пирамиды DA взятую с горизонтальной плоскости проекций — l DA . По вертикальной линии прямого угла откладываем разность координат точек D и A , взятых с фронтальной плоскости проекций (по оси z вниз) — . Соединив полученные точки гипотенузой, получим натуральную величину ребра пирамиды | DA | .

Таким образом определяем натуральные величины других ребер пирамиды DB и DC , а также основания пирамиды АВ, ВС, АС (рис.4.2) , для которых строим второй прямой угол. Заметим, что определение натуральной величины ребра DC производится в тех случаях, когда на исходном чертеже он дан проекционно. Это легко определяется, если вспомним правило: «если прямая па какой-либо плоскости проекций параллельна оси координат, то на сопряженной плоскости она проецируется в натуральную величину».

В частности, в примере нашей задачи фронтальная проекция ребра D C параллельна оси х , следовательно, в горизонтальной плоскости DC сразу выражена в натуральной величине | DC | (рис.4.1).

Рис.4.4

4. Определив натуральные величины ребер и основания пирамиды, приступаем к построению развертки (рис.4.4 ). Для этого на листе формата бумаги ближе к левой стороне рамки берем произвольную точку D считая, что это вершина пирамиды. Проводим из точки D произвольную прямую и откладываем на ней натуральную величину ребра | DA | , получая точку А . Тогда из точки А , взяв на раствор циркуля натуральную величину основания пирамиды R =|АВ| и поместив ножку циркуля в точку А делаем дуговую засечку. Далее берем на раствор циркуля натуральную величину ребра пирамиды R =| DB | и, поместив ножку циркуля в точку D делаем вторую дуговую засечку. В пересечении дуг получаем точку В , соединив ее с точками А и D получаем грань пирамиды D АВ . Аналогичным образом пристраиваем к ребру DB грань DBC , а к ребру DC — грань DC А .

К одной из сторон основания, например В C , пристраиваем основание пирамиды также методом геометрических засечек, беря на раствор циркуля величины сторон А B и A С и делая дуговые засечки из точек B и C получая точку A (рис.4.4).

5. Построение развертки призмы упрощается тем, что на исходном чертеже в горизонтальной плоскости проекций основанием, а во фронтальной – высотой 85мм, она задана сразу в натуральную величину

Для построения развертки мысленно разрежем призму по какому-либо ребру, например по E , закрепив его на плоскости, развернем другие грани призмы до полного совмещения с плоскостью. Вполне очевидно, что получим прямоугольник, у которого длиной является сумма длин сторон основания, а высотой — высота призмы – 85мм .

Итак, для построения развертки призмы поступаем:

— на том же формате, где построена развертка пирамиды, с правой стороны проводим горизонтальную прямую линию и от произвольно взятой точки на ней, например E, последовательно откладываем отрезки основания призмы EK , KG , GU , UE , взятые с горизонтальной плоскости проекций;

— из точек E , K , G , U , E восстанавливаем перпендикуляры, на которых откладываем высоту призмы, взятую с фронтальной плоскости проекций (85мм);

— соединяя полученные точки прямой, получаем развертку боковой поверхности призмы и к одной из сторон основания, например, GU пристраиваем верхнее и нижнее основание методом геометрических засечек, как выполняли при построении основания пирамиды.

Рис.4.5

6. Для построения линии пересечения на развертке используем правило, гласящее о том, что «любой точке на поверхности соответствует точка на развертке». Возьмем, например, грань призмы GU , где проходит линия пересечения с точками 1-2-3 ; . Отложим на развертке основания GU точки 1,2,3 по расстояниям, взятым с горизонтальной плоскости проекции. Восстановим из этих точек перпендикуляры и отложим на них высоты точек 1’ , 2’, 3’ , взятые с фронтальной плоскости проекции – z 1 , z 2 и z 3 . Таким образом, на развертке получили точки 1, 2, 3, соединив которые получаем первую ветвь линии пересечения.

Аналогично переносятся, все остальные точки. Построенные точки соединяются, получая вторую ветвь линии пересечения. Выделяем красным цветом – искомая линия. Добавим, что при неполном пересечении гранных тел, на развертке призмы будет одна замкнутая ветвь линии пересечения.

7. Построение (перенесение) линии пересечения на развертке пирамиды производится таким же образом, но с учетом следующего:

— поскольку развертки строятся из натуральных величин, необходимо перенести положение точек 1-8 линии пересечения проекций на линии ребер натуральных величин пирамиды. Для этого возьмем, например, точки 2 и 5 во фронтальной проекции ребра DA перенесем их на проекционную величину этого ребра прямого угла (рис.4.1) по линиям связи параллельным оси х , получим искомые отрезки | D 2| и | D 5| ребра DA в натуральных величинах, которые и откладываем (переносим) на развертку пирамиды;

— аналогично переносятся все другие точки линии пересечения, в том числе и точки 6 и 8 , лежащие на образующих Dm и Dn для чего на прямом угле (рис.4.3) определяются натуральные величины этих образующих, а затем на них переносятся точки 6 и 8 ;

— на втором прямом угле, где определены натуральные величины основания пирамиды, переносятся точки m и n пересечений образующих с основанием, которые впоследствии переносятся на развертку.

Таким образом, полученные на натуральных величинах точки 1-8 и перенесенные на развертку, соединяем последовательно прямыми линиями и окончательно получаем линию пересечения пирамиды на ее развертке.

Раздел: Начертательная геометрия /