Название «алюминий» произошло от «алюмиум» - вещество, открытое английским ученым-химиком Хэмфри Дэви в 1807 году. Корень слова «алюм» обозначает «квасцы», представляющие собой соль алюминия.
Попытки Хэмфри выделить открытый им металл в чистом виде не увенчались успехом, и только в 1825 году другой ученый, датчанин Ханс Кристиан Эрстед, смог получить алюминий без примесей.
Спустя еще 20 лет немецким ученым Фридрихом Вехлером были проведены первые глубокие исследования свойств алюминия. Своей целью Вехлер ставил открыть секрет легкости этого металла.
Многие из ученых того времени пытались решить проблему выделения этого металла, предлагались различные способы, но все они имели свои изъяны. Так, в середине 50-х годов XIX века француз Анри Сент-Клер Девиль, научился получать алюминий, используя натрий, однако на выходе получалось всего несколько килограммов легкого металла. В результате, этот способ практически не использовался в промышленном производстве, но получил широкое распространение у ученых, что позволило им ставить больше опытов по изучению характеристик алюминия.
История получения алюминия путем плавления началась в конце XIX века. Этот способ был открыт в 1886 году одновременно двумя разными учеными: американцем Чарльзом Холлом и французом Полем Эру. Интересен тот факт, что они не только в один год изобрели метод Холла-Эру, как впоследствии его назвали, но и их даты рождения и смерти тоже совпадают (1863-1914 гг.).
Спустя 2 года австриец Карл Вайер модернизировал метод Холла-Эру, взяв в качестве исходного материала для производства алюминия не его оксид, а бокситы. Это привело к падению цен на алюминий на 80 % и его широкому распространению в промышленности.
Алюминий стали использовать практически везде: от бытовой сферы до производства оружия. Его упоминал в своих произведениях всемирно известный писатель Жюль Верн. Там герои строили из алюминия ракеты и корабли.
Также способствовало развитию применения алюминия и изобретение многослойной фанеры, резины и, конечно же, пластмассы. Все эти материалы активно интегрировались с алюминием при производстве сложных устройств и механизмов. О динамике развития производства алюминия говорит тот факт, что за сто с лишним лет, с конца XIX по XXI век, производство алюминия увеличилось в 110 тысяч раз и в 2010 году составило 40 млн. тонн.
Знаете ли вы, что обладание любым алюминиевым изделием, таким как профиль, втулка, ложка или элемент фурнитуры — в 19 веке уже сделало бы вас вполне состоятельным человеком? Сегодня, конечно, хорошо известно, что алюминий очень распространен по всему миру, но раньше он ценился дороже золота. А дело все в том, что алюминия в чистой металлической форме в земной коре нет, хотя в виде химических соединений он составляет чуть ли не 8% земной коры.
В древности двойные соли алюминия (тогда они еще так не назывались) — квасцы — довольно широко применялись для решения различных задач, хотя об алюминии как таковом не шло и речи. Трехвалентный металл, присутствующий в солях, позволял использовать квасцы для различных целей, и даже сегодня квасцы применяются в антибактериальном мыле, в лосьонах после бритья, в разрыхлителях.
Алюмо-калиевые квасцы широко применялись в древние времена в качестве протрав и как средства остановки кровотечений. Раствором алюмо-калиевых квасцов пропитывали древесину, что делало ее негорючей. Известный исторический рассказ свидетельствует о том, как римский полководец Архелай во времена войны с персами велел вымазать башни оборонительных сооружений квасцами, благодаря чему персам при всем желании не удалось поджечь их, не то чтобы сжечь.
О содержащемся в квасцах алюминие лишь в 1807 году начал всерьез говорить английский химик, физик и геолог, сэр Гемфри Дэви, который отметил, что кроме солей в квасцах присутствует еще и некий металл. Гемфри Дэви решил назвать этот металл «алюминий», поскольку слово «alum» в переводе с латыни — квасцы.
Справедливости ради стоит упомянуть и о том, что во франции еще за 29 лет до Дэви, химик Антуан Лавуазье уже указал в своих работах по химии на оксид алюминия, который он назвал «агрилл», и в то же время отметил, что это вещество, вероятно, может существовать и в твердом виде, то есть в виде металла. Хотя технологически в те годы было еще невозможным отделить сильные атомы кислорода от молекул оксида.
Первый серьезный успех пришел в 1825 году, когда физик и исследователь электромагнетизма из Дании, Ганс Христиан Эрстед, в своей лаборатории нагрел безводный хлорид алюминия (полученный пропусканием хлора через раскаленную смесь оксида алюминия с углем) с амальгамой калия, и, отогнав ртуть, получил алюминий, хотя и немного загрязненный примесями, подтвердив, однако, тем самым фундаментально важную мысль Дэви.
В честь коллеги англичанина, который вдохновил Эрстеда на проведение данного эксперимента, Эрстед назвал полученный металл алюминием. Эрстед считается теперь первым ученым, который получил алюминий в лаборатории.
Через два года после эксперимента Эрстеда, немецкий физик и врач по образованию, Фридрих Вёлер, разработал новый способ лабораторного получения алюминия, улучшив метод Эрстеда. Вёлер смог получить алюминий в виде порошка гранул, в результате нагревания хлорида алюминия с калием. Аналогичным способом Вёлер получил затем бериллий и иттрий.
На протяжении следующих 18 лет, до 1845 года, ученые уже произвели достаточно металла, чтобы детально изучить его свойства. Но именно Вёллер отметил необычную легкость алюминия, по сравнению с другими металлами.
Еще девять лет спустя, а именно — в 1854 году, французский физик и химик Анри Сент-Клер Девиль сумел разработать гораздо более практичный способ получения алюминия. Он использовал металлический натрий для вытеснения алюминия из двойного хлорида натрия и алюминия. Это был способ, с помощью которого можно было за раз получить несколько килограммов чистого алюминия. Через два года Анри Сент-Клер Девиль первым получит алюминий путем электролиза расплава хлорида натрия-алюминия.
Интересный исторический факт. В 1855 году Наполеон III организовал выставку слитков алюминия. 12 миниатюрных слитков поражали гостей выставки своим блеском, будучи при этом очень легкими.
Так алюминий стал идеальным металлом для производства ювелирных украшений и разных элементов одежды, таких как, например, пряжки, и долгое время служил не последним из музейных экспонатов. Сей факт приводил Анри в бешенство — значение алюминия не должно было быть ограничено побрякушками.
Император, спонсировавший исследователя в его работе, надеялся, что из алюминия можно будет делать оружие и броню, и было изготовлено даже несколько шлемов, в итоге наступило разочарование в свойствах металла. Наполеон III приказал переработать весь полученный алюминий на производство столовых приборов.
Эти столовые приборы использовались лишь высшими лицами, включая самого императора, в то время как гостям выдавали лишь золотые ложки и вилки. Алюминий в те времена было получить тяжелее, чем золото, и цена его поэтому была выше золота во много раз.
В 1886 году положение дел изменилось. Был открыт метод промышленного производства алюминия . Одновременное открытие, независимо друг от друга, сделали французский инженер-химик Поль-Луи-Туссен Эру и американец Чарльз Мартин Холл — тоже инженер-химик. Известно, что Холл был поначалу очень удивлен, когда обнаружил на дне сосуда бляшки чистого алюминия.
Этот метод по сей день носит имя своих изобретателей - процесс Холла—Эру - растворение оксида алюминия в расплаве криолита с последующим электролизом с использованием расходуемых коксовых или графитовых анодных электродов. В 20 веке этот метод использовался очень широко для промышленного получения алюминия.
Вообще, спустя всего два года после открытия Холла и Эру, для получения оксида алюминия российский химик австрийского происхождения Карл Иосифович Байер предложил дешево получать оксид алюминия из боксита.
Так цена на алюминий упала за одну ночь в пять раз. В конечном итоге, если в 1852 году килограмм алюминия стоил 1200 долларов, то к началу 20 века килограмм стоил уже менее доллара. И сегодня алюминиевые изделия в основном не стоят очень дорого.
Получаемый металл был хорош всем кроме прочности, так необходимой в промышленности. Но и эта проблема позже была решена. В 1903 году немецкий инженер-металлург Альфред Вильм установил, что сплав алюминия с добавкой 4 % меди после резкого охлаждения (температура закалки 500 °C), находясь при комнатной температуре в течение 4-5 суток, постепенно становится более твёрдым и прочным, не теряя при этом пластичности.
В 1909 году Вильм подал заявку на патент «Способ улучшения сплавов алюминия, содержащих магний». В промышленных масштабах прочный сплав алюминия начали получать в 1911 году в немецком городке Дюрене, в честь которого этот сплав и получил название «дюралюминий».
Андрей Повный
Алюминий в чистом виде впервые выделен Фридрихом Велером. Немецкий химик нагрел безводный хлорид элемента с металлическим калием. Произошло это во 2-ой половине 19-го века. До 20-го столетия кг алюминия стоил дороже .
Новый металл позволяли себе лишь богачи и государственные . Причина высокой стоимости – сложность отделения алюминия от других веществ. Метод добычи элемента в промышленных масштабах предложил Чарльз Холл.
В 1886-ом году он растворил оксид в расплаве криолита. Немец заключил смесь в гранитный сосуд и подключил к нему электрический ток. На дно емкости осели бляшки чистого металла.
Химические и физические свойства алюминия
Какой алюминий? Серебристо-белый, блестящий. Поэтому, Фридрих Велер сравнивал полученные им гранулы металла с . Но, была оговорка, — алюминий значительно легче.
Пластичность же приближена к драгоценным и . Алюминий – вещество , без проблем вытягивающееся в тонкую проволоку и листы. Достаточно вспомнить фольгу. Она делается на основе 13-го элемента.
Алюминий легок за счет небольшой плотности. Она втрое меньше, чем у и железа. При этом в прочности 13-ый элемент почти не уступает.
Такое сочетание сделало серебристый металл незаменимым в промышленности, к примеру, производстве деталей для автомобилей. Речь идет и о кустарном производстве, ведь сварка алюминия возможна даже в домашних условиях.
Формула алюминия позволяет активно отражать световые, но и тепловые лучи. Высока и электропроводность элемента. Главное, излишне не нагревать его. При 660-ти градусах расплавится. Поднимись температура чуть выше – сгорит.
Металл исчезнет, останется лишь оксид алюминия . Он образуется и в стандартных условиях, но лишь в виде поверхностной пленки. Она защищает металл. Поэтому, он неплохо противостоит коррозии, ведь доступ кислорода блокирован.
Оксидная пленка защищает металл и от воды. Если удалить с поверхности алюминия налет, запустится реакция с Н 2 О. Выделение газов водорода произойдет даже при комнатной температуре. Так что, алюминиевая лодка не превращается в дым лишь за счет оксидной пленки и защитной краски, нанесенной на корпус судна.
Наиболее активно взаимодействие алюминия с неметаллами. Реакции с бромом и хлором проходят даже при обычны условиях. В итоге, образуются соли алюминия . Соли водорода получаются, если соединить 13-ый элемент с растворами кислот. Реакция состоится и со щелочами, но лишь после удаления оксидной пленки. Выделится чистый водород.
Применение алюминия
Металл напыляют на зеркала. Пригождаются высокие показатели отражения света. Процесс проходит в условиях вакуума. Изготавливают не только стандартные зеркала, но предметы с зеркальными поверхностями. Таковыми становятся: керамическая плитка, бытовая техника, светильники.
Дуэт алюминий-медь – основа дюралюминий. Попросту его называют дюраль. В качестве добавляют . Состав прочнее чистого алюминия в 7 раз, поэтому, подходит для области машиностроения и авиаконструирования.
Медь придает 13-му элементу прочность, но не тяжесть. Дюраль остается в 3 раза легче железа. Небольшая масса алюминия – залог легкости авто, самолетов, кораблей. Это упрощает перевозку, эксплуатацию, снижает цену продукции.
Купить алюминий автопромышленники стремятся еще и потому, что на его сплавы легко наносятся защитные и декоративные составы. Краска ложится быстрее и ровнее, чем на сталь, пластик.
При этом, сплавы податливы, просто обрабатываются. Это ценно, учитывая массу изгибов и конструктивных переходов на современных моделях автомобилей.
13-ый элемент не только легко красится, но и сам может выступать в роли красителя. В текстильной промышленности закупается сульфат алюминия . Он же пригождается в печатном деле, где требуются нерастворимые пигменты.
Интересно, что раствор сульфата алюминия применяют еще и для очистки воды. В присутствии «агента» вредные примеси выпадают в осадок, нейтрализуются.
Нейтрализует 13-ый элемент и кислоты. Особенно хорошо с этой ролью справляется гидроксид алюминия . Его ценят в фармакологии, медицине, добавляя в лекарства от изжоги.
Выписывают гидроксид и при язвах, воспалительных процессах кишечного тракта. Так что в аптечных препарата тоже есть алюминий. Кислота в желудке – повод узнать о таких лекарствах побольше.
В СССР и бронзы с 11-процентной добавкой алюминия чеканили . Достоинство знаков – 1, 2 и 5 копеек. Начали выпускать в 1926-ом, закончили в 1957-ом году. А вот производство алюминиевых банок для консервов не прекратили.
Тушенку, сайру и прочие завтраки туристов до си пор упаковывают в тару на основе 13-го элемента. Такие банки не вступают в реакцию с продуктами питания, при этом, легки и дешевы.
Порошок алюминия входит в состав многих взрывчатых смесей, в том числе и пиротехники. В промышленности применяют подрывные механизмы на основе тринитротолуола и измельченного 13-го элемента. Мощная взрывчатка получается и при добавлении к алюминию аммиачной селитры.
В нефтяной отрасли необходим хлорид алюминия . Он играет роль катализатора при разложении органики на фракции. У нефти есть свойство выделять газообразные, легкие углеводороды бензинового типа, взаимодействуя с хлоридом 13-го металла. Реагент должен быть безводным. После добавления хлорида, смесь прогревают до 280-ти градусов Цельсия.
В строительстве нередко смешиваю натрий и алюминий . Получается присадка к бетону. Алюминат натрия ускоряет его затвердение за счет убыстрения гидратации.
Повышается скорость микрокристаллизации, значит, увеличивается прочность и твердость бетона. К тому же, алюминат натрия спасает арматуру, уложенную в раствор, от коррозии.
Добыча алюминия
Металл замыкает тройку самых распространенных на земле. Это объясняет его доступность и широкое применение. Однако, в чистом виде природа элемент человеку не дает. Алюминий приходится выделять из различных соединений. Больше всего 13-го элемента в бокситах. Это глиноподобные породы, сосредоточенные, в основном, в тропическом поясе.
Бокситы дробят, потом сушат, снова дробят и перемалывают в присутствии небольшого объема воды. Получается густая масса. Ее нагревают паром. При этом большая часть , коим бокситы тоже не бедны, испаряется. Остается оксид 13-го металла.
Его помещают в промышленные ванны. В них уже находится расплавленный криолит. Температура держится на отметке 950 градусов Цельсия. Нужен и электрический ток силой минимум в 400 кА. То есть, используется электролиз, как и 200 лет назад, когда элемент выделял Чарльз Холл.
Проходя через раскаленный раствор, ток разрывает связи между металлом и кислородом. В итоге, на дне ванн остается чистый алюминий. Реакции окончены. Завершает процесс отливание из осадка и их отправка потребителю, или же, использование для формирования различных сплавов.
Основные производства алюминия находятся там же, где и залежи бокситов. В передовика – Гвинея. В ее недрах скрыто почти 8 000 000 тонн 13-го элемента. На 2-ом месте Австралия с показателем в 6 000 000. В Бразилии алюминия уже в 2 раза меньше. Общемировые же запасы оцениваются в 29 000 000 тонн.
Цена алюминия
За тонну алюминия просят почти 1 500 долларов США. Таковы данные бирж цветных металлов на 20 января 2016-го. Стоимость устанавливается, в основном, промышленниками. Точнее, на цену алюминия влияет их спрос на сырье. Влияет на запросы поставщиков и стоимость электроэнергии, ведь производство 13-го элемента энергоемко.
Иные цены установлены на алюминия. Он идет на переплавку. Стоимость оглашается за килограмм, причем, имеет значение характер сдаваемого материала.
Так, за электротехнический металл дают примерно 70 рублей. За пищевой алюминий можно получить на 5-10 рублей меньше. Столько же платят за моторный металл. Если сдается разносортица, ее цена – 50-55 рублей за килограмм.
Самый дешевый вид лома – стружка алюминия. За нее удается выручить лишь 15-20 рублей. Чуть больше дадут за из 13-го элемента. Имеется в виду тара из-под напитков, консервов.
Невысоко ценят и алюминиевые радиаторы. Цена за килограмм лома – около 30-ти рублей. Это усредненные показатели. В разных регионах, на разных точках алюминий принимают дороже, либо дешевле. Нередко стоимость материалов зависит от сдаваемых объемов.
Алюминий - один из интереснейших химических элементов. Интересен он не только тем, что неожиданно быстро и победоносно, в течение нескольких десятков лет, вошел в нашу жизнь, в быт, в технику, в важнейшие отрасли народного хозяйства, не только тем, что это тот легкий металл, который вместе с магнием создал крылатую мощь самолета. Большой интерес представляют его свойства и прежде всего геохимическая роль. Дело в том, что алюминий, с которым культурное человечество познакомилось так недавно, является одним из важнейших, самых распространенных химических элементов .
Мы с вами отлично знаем, что под покровом глин, песков, образовавшихся в разное время в результате выветривания и разрушения массивных горных пород, находится сплошная, облегающая весь земной шар, каменная оболочка Земли, или земная кора.
Мощность этой каменной оболочки, ее толщина не менее сотни километров, а может быть, как сейчас начинают предполагать, и значительно больше. Эта оболочка на глубине постепенно переходит в другую - рудную, содержащую железо и другие металлы, и, наконец, в центре Земли находится, по-видимому, железное ядро.
Каменная оболочка образует на поверхности Земли огромные выступы - материковые массы, или континенты. На них, в свою очередь, образовались складки в виде длинных цепей гор.
Каменная оболочка Земли, составляющая основание континентов и их горных цепей, слагается из алюмосиликатов и силикатов. Алюмосиликаты состоят, как это видно по их названию, из кремния, алюминия и кислорода. Вот почему каменную оболочку часто называют «сиаль» - SiAl,- по сочетанию первых слогов латинских названий кремния - Silicium - и алюминия - Aluminium.
Эта оболочка, в состав которой главным образом входит гранит, по весу состоит примерно!лз 50% кислорода, 25% кремния и 10% алюминия. Таким образом, алюминий но распространению занимает на Земле третье место среди химических элементов и первое место среди металлов. Его на Земле больше, чем железа.
Алюминий, кремний и кислород вместе являются самыми главными элементами, из которых построена земная кора, и в каменной оболочке Земли они образуют разнообразные минералы. Эти минералы являются такого рода соединениями атомов, у которых в центре находится либо атом кремния, либо атом алюминия, а вокруг них правильно в четырех углах, образуя фигуру тетраэдра, располагаются атомы кислорода.
Таким образом, наряду с кремнекислородными возникают алюмокислородные тетраэдры. При этом роль алюминия бывает двоякой: либо он, подобно другим металлам, располагается между кремнекислородными тетраэдрами, связывая их друг с другом, либо он становится в некоторых тетраэдрах на место кремния.
Вот из этих-то тетраэдров кремния и алюминия путем сочетания их между собой я образуется множество важнейших минералов земной коры, объединенных под общим названием алюмосиликатов. С первого взгляда сложный рисунок расположения атомов алюминия, кремния и кислорода напоминает яам тонкие кружева или узоры ковров. Эта картина могла быть установлена лишь при помощи рентгеновских лучей, которые как бы сфотографировали внутреннее строение минералов.
Вспомним, какими серыми и однообразными казались нам камни в далеком детстве и какая сложная и разнообразная картина рисуется нам, когда мы проникаем в глубь их структуры.
Распространенность некоторых алюмосиликатов колоссальна. Достаточно сказать, что более половины земной коры сложено минералами, носящими название нолевых шпатов. Они входят в состав гранитов, гнейсов и других каменных пород, охватывающих землю как бы сплошным каменным панцирем и выступающих в виде могучих горных цепей.
В результате выветривания полевых шпатов на земной поверхности в ходе тысячелетий откладываются, грандиозные скопления глин, состоящих на 15-20% из алюминия. Алюминий, открытый в составе этих повсеместно распространенных пород, даже был назван глинием.
Безводную окись алюминия (АЬОз) мы встречаем в виде минерала корунда, отличающегося замечательной твердостью, а иногда и необычайной красотой. Прозрачные разности глинозема, где к алюминию и кислороду примешиваются лишь крошечные количества элементов - красителей - хрома, железа, титана, принадлежат к числу первоклассных красавцев- самоцветов. Какое разнообразие цветов и богатство красок создает в одном и том же глиноземе ничтожная примесь того или иного вещества! Это сверкающий яркими тонами красный рубин и синий сапфир, пленявшие человека с незапамятных времен. Сколько сказок связано с этими камнями! Издавна служат человеку и менее чистые, непрозрачные, окрашенные в бурые, серые, синеватые, красноватые цвета кристаллы корунда, по своей твердости уступающие лишь алмазу.
С их помощью мы обрабатываем разные твердые материалы, в том числе блестящую сталь инструментов, оружия, станков, машин.
Мелкие кристаллики того же корунда в смеси с магнетитом и другими минералами,- так называемый наждак - хорошо известны каждому; вы, вероятно, не раз чистили наждаком свой перочинный ножик!
Корунд мог бы, конечно, служить легким источником получения металлического алюминия, но он слишком ценен сам по себе, и его мало в природе.
С незапамятных времен, еще на заре человеческой культуры, с каменного века и до наших дней человек широко использовал граниты, базальты, порфиры, глины и другие породы из алюмосиликатов, строя из них целые города, создавая здания, произведения искусства, утварь, получая керамику, фаянс, фарфор.
Но в течение тысячелетий человек и не подозревал благородных и чудесных свойств алюминия - металла, который был скрыт в этих породах.
Алюминий никогда и нигде в природе не встречается в металлическом виде, он всегда находится в различных соединениях, совершенно отличных по свойствам и виду от металла алюминия.
И нужен был гений человека, его упорный труд, чтобы извлечь и вызвать к жизни этот чудесный металл.
Впервые удалось выделить небольшое количество блестящего серебристого металла около 125 лет назад. Й никто тогда не думал, что он вообще будет играть какую-то роль в жизни человека, тем более, что получение его было очень трудным. Но вот в начале прошлого века ряду ученых удалось путем электролиза выделить алюминий на катоде под коркой шлаков из расплавленных при высоких температурах соединений алюминия. Это был чистый серебристый металл - «серебро из глины», как говорили в то время.
Этот метод получения алюминия перешел на заводы, и металл быстро стал завоевывать себе широкое применение. Он имеет цвет, напоминающий серебро. А свойства его действительно оказались удивительными.
Производство металлического алюминия основано на двух самостоятельных процессах. Прежде всего из боксита после довольно сложной обработки извлекается чистая безводная окись алюминия - глинозем. Затем окись алюминия подвергается электролизу в специальных ваннах, выложенных графитовыми плитами.
Порошок глинозема загружается в эти ванны в смеси с порошком криолита. При включении мощного электрического тока развивается высокая температура (около 1000°); криолит плавится и растворяет в себе глинозем, который в дальнейшем разлагается током на алюминий и кислород. Дно ванны служит при этом катодом (отрицательным полюсом), и на нем собирается расплавленный алюминий. Через особый кран его выпускают и разливают по формам, где он и застывает в виде блестящих серебристых брусков.
Кое-какие из свойств алюминия хорошо известны всем. Это очень легкий металл, почти в три раза легче железа. Он очень тягуч и при этом достаточно прочен: его можно вытягивать в проволоку, плющить в тончайшие листы. Не менее замечательны и его химические свойства. С одной стороны, он как будто не боится окисления; это мы знаем по поведению алюминиевой посуды, кастрюлек, сковородок, бидонов. А между тем сродство его с кислородом очень велико. Это кажущееся противоречие отметил еще наш великий химик Д. И. Менделеев. Дело в том, что серебряно-блестящий после выплавки алюминий на воздухе покрывается тусклой пленочкой окиси, которая предохраняет его от дальнейшего окисления. Не всякому металлу дана такая способность самозащиты. Окись железа, например, хорошо всем известная ржавчина, нисколько не мешает дальнейшему разрушению металла: она слишком рыхла и легко проницаема для воздуха и ®оды. Напротив, тоненькая пленочка окиси, одевающей алюминий, очень плотна, эластична и служит ему надежным покровом.
При нагревании алюминий жадно соединяется с кислородом, превращаясь в окись алюминия, и выделяет при этом огромное количество тепла. Это свойство алюминия выделять тепло при сгорании было использовано в технике для выплавки других металлов из их окисей путем смешения с порошком металлического алюминия. В этом процессе алюминотермии
металлический алюминий отбирает кислород от окисей других металлов и восстанавливает их.
Если вы смешаете, например, порошок окиси железа с порошком алюминия и подожжете эту смесь лентой магния, на ваших глазах разовьется бурная реакция с выделением огромного количества тепла, и температура поднимется до 3 000°. Вытесненное алюминием железо при этой температуре плавится, а образовавшаяся окись алюминия всплывает на его поверхность в виде шлака. Человек использовал эту активность алюминия для получения некоторых тугоплавких и технически ценных металлов.
Таким путем выплавляют металлический титан, ванадий, хром, марганец и другие металлы. Так как при алюминотермии развивается высокая температура, то смесь окиси железа с алюминием - так называемый термит - применяют для сварки стали. Каждый из вас видел, вероятно, как это делается, например, при сварке трамвайных рельсов. Расплавляемое при горении термита железо стекает на соединенные концы рельсов и сваривает их.
Вряд ли можно назвать много элементов, которые сделали бы столь быструю и блестящую карьеру, как алюминий!
Алюминий стал стремительно проникать в автомобильную, машиностроительную и другие области промышленности, во многих случаях заменяя сталь и железо. В военном судостроении его использование произвело переворот, позволив создать, например, «карманные линкоры» (суда размером с легкий крейсер и мощностью дредноута).
Человек научился получать это «серебро» из природных минералов в огромных масштабах. И «серебро из глины» позволило человеку окончательно покорить воздушную стихию.
Алюминий или его легкие сплавы как нельзя лучше подходят для постройки жестких аэростатов, фюзеляжей, крыльев или цельнометаллических самолетов.
Эта новая промышленность, которая так широко использовала алюминий, выросла с чудесной быстротой на наших глазах.
Когда мы видим летающий над нами самолет, вспомним, что 69% его веса без мотора приходится на алюминий и его- сплавы, и что даже в авиационном моторе вес алюминия и магния - двух легчайших металлов - достигает 25%.
Одновременно с грандиозным потреблением в тяжелой промышленности, с постройкой цельноалюминиевых поездов, с затратой алюминия на машиностроение и особенно на авиационную промышленность, сотни тысяч тонн алюминия расходуются на алюминиевые провода и детали для электрической промышленности.
Но и этим не исчерпывается применение этого металла.
Добавим еще отражательные зеркала прожекторов, ответственные части спарядов и пулеметных лент, осветительные ракеты, алюминиевый порошок в смеси с окисью железа - в зажигательных бомбах. Вспомним о колоссальном значении искусственного кристаллического глинозема (электрокорунда, алундума), получаемого в настоящее время из тех же бокситов и применяемого в так называемом абразивном деле, главным образом в обработке металлов.
Кристаллизуя чистую окись алюминия с добавкой красителей, мы получаем чудесные рубины и сапфиры, не уступающие природным ни по твердости, ни по красоте. Мы применяем их главным образом как не поддающиеся истиранию опорные камни в ответственных частях точных приборов: часовых механизмов, весов, электросчетчиков, гальванометроз и т. п.
Тонким порошком алюминия мы покрываем железо, получая своего рода алюминиевую жесть, не поддающуюся ржавчине. Этот же порошок служит для приготовления красивой литографской краски. А с недавнего времени его оценили и мастера знаменитого народного искусства - хохломской росписи по дереву. Алюминиевая пудра при помощи мягкой «куколки» наносится на пропитанную маслом поверхность предмета. Таким образом создается прелестный серебряный фон, по которому мастер выводит затем сложный цветистый узор росписи.
Почему мы называем алюминий металлом XX века?
Потому что его применение благодаря его замечательным свойствам растет и растет с каждым годом, а огромные запасы алюминия неисчерпаемы, и есть все основания считать, что алюминий сейчас входит в обиход человечества так же, как вошло в свое время железо.
Пройдут столетия, и наше время, возможно, будут называть алюминиевым веком!
В земной коре алюминия очень много: 8,6% по массе. Он занимает первое место среди всех металлов и третье среди других элементов (после кислорода и кремния). Алюминия вдвое больше, чем железа, и в 350 раз больше, чем меди, цинка, хрома, олова и свинца вместе взятых! Как писал более 100 лет назад в своем классическом учебнике Основы химии Д.И.Менделеев , из всех металлов «алюминий есть самый распространенный в природе; достаточно указать на то, что он входит в состав глины, чтоб ясно было всеобщее распространение алюминия в коре земной. Алюминий, или металл квасцов (alumen), потому и называется иначе глинием, что находится в глине».
Важнейший минерал алюминия – боксит, смесь основного оксида AlO(OH) и гидроксида Al(OH) 3 . Крупнейшие месторождения боксита находятся в Австралии, Бразилии, Гвинее и на Ямайке; промышленная добыча ведется и в других странах. Богаты алюминием также алунит (квасцовый камень) (Na,K) 2 SO 4 ·Al 2 (SO 4) 3 ·4Al(OH) 3 , нефелин (Na,K) 2 O·Al 2 O 3 ·2SiO 2 . Всего же известно более 250 минералов, в состав которых входит алюминий; большинство из них – алюмосиликаты, из которых и образована в основном земная кора. При их выветривании образуется глина, основу которой составляет минерал каолинит Al 2 O 3 ·2SiO 2 ·2H 2 O. Примеси железа обычно окрашивают глину в бурый цвет, но встречаются и белая глина – каолин, которую применяют для изготовления фарфоровых и фаянсовых изделий.
Изредка встречается исключительно твердый (уступает лишь алмазу) минерал корунд – кристаллический оксид Al 2 O 3 , часто окрашенный примесями в разные цвета. Его синяя разновидность (примесь титана и железа) называется сапфиром, красная (примесь хрома) – рубином. Разные примеси могут окрашивать так называемый благородный корунд также в зеленый, желтый, оранжевый, фиолетовый и другие цвета и оттенки.
Еще недавно считалось, что алюминий как весьма активный металл не может встречаться в природе в свободном состоянии, однако в 1978 в породах Сибирской платформы был обнаружен самородный алюминий – в виде нитевидных кристаллов длиной всего 0,5 мм (при толщине нитей несколько микрометров). В лунном грунте, доставленном на Землю из районов морей Кризисов и Изобилия, также удалось обнаружить самородный алюминий. Предполагают, что металлический алюминий может образоваться конденсацией из газа. Известно, что при нагревании галогенидов алюминия – хлорида, бромида, фторида они могут с большей или меньшей легкостью испаряться (так, AlCl 3 возгоняется уже при 180° C). При сильном повышении температуры галогениды алюминия разлагаются, переходя в состояние с низшей валентностью металла, например, AlCl. Когда при понижении температуры и отсутствии кислорода такое соединение конденсируется, в твердой фазе происходит реакция диспропорционирования: часть атомов алюминия окисляется и переходит в привычное трехвалентное состояние, а часть – восстанавливается. Восстановиться же одновалентный алюминий может только до металла: 3AlCl ® 2Al + AlCl 3 . В пользу этого предположения говорит и нитевидная форма кристаллов самородного алюминия. Обычно кристаллы такого строения образуются вследствие быстрого роста из газовой фазы. Вероятно, микроскопические самородки алюминия в лунном грунте образовались аналогичным способом.
Название алюминия происходит от латинского alumen (род. падеж aluminis). Так называли квасцы, двойной сульфат калия-алюминия KAl(SO 4) 2 ·12H 2 O), которые использовали как протраву при крашении тканей. Латинское название, вероятно, восходит к греческому «халмэ» – рассол, соляной раствор. Любопытно, что в Англии алюминий – это aluminium, а в США – aluminum.
Во многих популярных книгах по химии приводится легенда о том, что некий изобретатель, имя которого история не сохранила, принес императору Тиберию, правившему Римом в 14–27 н.э., чашу из металла, напоминающего цветом серебро, но более легкого. Этот подарок стоил жизни мастеру: Тиберий приказал казнить его, а мастерскую уничтожить, поскольку боялся, что новый металл может обесценить серебро в императорской сокровищнице.
Эта легенда основана на рассказе Плиния Старшего , римского писателя и ученого, автора Естественной истории – энциклопедии естественнонаучных знаний античных времен. Согласно Плинию, новый металл был получен из «глинистой земли». А ведь глина действительно содержит алюминий.
Современные авторы почти всегда делают оговорку, что вся эта история – не более чем красивая сказка. И это не удивительно: алюминий в горных породах чрезвычайно прочно связан с кислородом, и для его выделения необходимо затратить очень много энергии. Однако в последнее время появились новые данные о принципиальной возможности получения металлического алюминия в древности. Как показал спектральный анализ, украшения на гробнице китайского полководца Чжоу-Чжу, умершего в начале III в. н.э., сделаны из сплава, на 85% состоящего из алюминия. Могли ли древние получить свободный алюминий? Все известные способы (электролиз, восстановление металлическим натрием или калием) отпадают автоматически. Могли ли в древности найти самородный алюминий, как, например, самородки золота, серебра, меди? Это тоже исключено: самородный алюминий – редчайший минерал, который встречается в ничтожных количествах, так что древние мастера никак не могли найти и собрать в нужном количестве такие самородки.
Однако возможно и другое объяснение рассказа Плиния. Алюминий можно восстановить из руд не только с помощью электричества и щелочных металлов. Существует доступный и широко используемый с древних времен восстановитель – это уголь, с помощью которого оксиды многих металлов при нагревании восстанавливаются до свободных металлов. В конце 1970-х немецкие химики решили проверить, могли ли в древности получить алюминий восстановлением углем. Они нагрели в глиняном тигле до красного каления смесь глины с угольным порошком и поваренной солью или поташом (карбонатом калия). Соль была получена из морской воды, а поташ – из золы растений, чтобы использовать только те вещества и методы, которые были доступны в древности. Через некоторое время на поверхности тигля всплыл шлак с шариками алюминия! Выход металла был мал, но не исключено, что именно этим путем древние металлурги могли получить «металл 20 века».
Свойства алюминия.
По цвету чистый алюминий напоминает серебро, это очень легкий металл: его плотность всего 2,7 г/см 3 . Легче алюминия только щелочные и щелочноземельные металлы (кроме бария), бериллий и магний. Плавится алюминий тоже легко – при 600° С (тонкую алюминиевую проволоку можно расплавить на обычной кухонной конфорке), зато кипит лишь при 2452° С. По электропроводности алюминий – на 4-м месте, уступая лишь серебру (оно на первом месте), меди и золоту, что при дешевизне алюминия имеет огромное практическое значение. В таком же порядке изменяется и теплопроводность металлов. В высокой теплопроводности алюминия легко убедиться, опустив алюминиевую ложечку в горячий чай. И еще одно замечательное свойство у этого металла: его ровная блестящая поверхность прекрасно отражает свет: от 80 до 93% в видимой области спектра в зависимости от длины волны. В ультрафиолетовой области алюминию в этом отношении вообще нет равных, и лишь в красной области он немного уступает серебру (в ультрафиолете серебро имеет очень низкую отражательную способность).
Чистый алюминий – довольно мягкий металл – почти втрое мягче меди, поэтому даже сравнительно толстые алюминиевые пластинки и стержни легко согнуть, но когда алюминий образует сплавы (их известно огромное множество), его твердость может возрасти в десятки раз.
Характерная степень окисления алюминия +3, но благодаря наличию незаполненных 3р - и 3d -орбиталей атомы алюминия могут образовывать дополнительные донорно-акцепторные связи. Поэтому ион Al 3+ с небольшим радиусом весьма склонен к комплексообразованию, образуя разнообразные катионные и анионные комплексы: AlCl 4 – , AlF 6 3– , 3+ , Al(OH) 4 – , Al(OH) 6 3– , AlH 4 – и многие другие. Известны комплексы и с органическими соединениями.
Химическая активность алюминия весьма высока; в ряду электродных потенциалов он стоит сразу за магнием. На первый взгляд такое утверждение может показаться странным: ведь алюминиевая кастрюля или ложка вполне устойчивы на воздухе, не разрушаются и в кипящей воде. Алюминий, в отличие от железа, не ржавеет. Оказывается, на воздухе металл покрывается бесцветной тонкой, но прочной «броней» из оксида, которая защищает металл от окисления. Так, если внести в пламя горелки толстую алюминиевую проволоку или пластинку толщиной 0,5–1 мм, то металл плавится, но алюминий не течет, так как остается в мешочке из его оксида. Если лишить алюминий защитной пленки или сделать ее рыхлой (например, погружением в раствор ртутных солей), алюминий тут же проявит свою истинную сущность: уже при комнатной температуре начнет энергично реагировать с водой с выделением водорода: 2Al + 6H 2 O ® 2Al(OH) 3 + 3H 2 . На воздухе лишенный защитной пленки алюминий прямо на глазах превращается в рыхлый порошок оксида: 2Al + 3O 2 ® 2Al 2 O 3 . Особенно активен алюминий в мелкораздробленном состоянии; алюминиевая пыль при вдувании в пламя моментально сгорает. Если смешать на керамической пластинке алюминиевую пыль с пероксидом натрия и капнуть на смесь водой, алюминий также вспыхивает и сгорает белым пламенем.
Очень высокое сродство алюминия к кислороду позволяет ему «отнимать» кислород от оксидов ряда других металлов, восстанавливая их (метод алюминотермии). Самый известный пример – термитная смесь, при горении которой выделяется так много тепла, что полученное железо расплавляется: 8Al + 3Fe 3 O 4 ® 4Al 2 O 3 + 9Fe. Эта реакция была открыта в 1856 Н.Н.Бекетовым. Таким способом можно восстановить до металлов Fe 2 O 3 , CoO, NiO, MoO 3 , V 2 O 5 , SnO 2 , CuO, ряд других оксидов. При восстановлении же алюминием Cr 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , SiO 2 , TiO 2 , ZrO 2 , B 2 O 3 теплоты реакции недостаточно для нагрева продуктов реакции выше их температуры плавления.
Алюминий легко растворяется в разбавленных минеральных кислотах с образованием солей. Концентрированная азотная кислота, окисляя поверхность алюминия, способствует утолщению и упрочнению оксидной пленки (так называемая пассивация металла). Обработанный таким образом алюминий не реагирует даже с соляной кислотой. С помощью электрохимического анодного окисления (анодирования) на поверхности алюминия можно создать толстую пленку, которую нетрудно окрасить в разные цвета.
Вытеснение алюминием из растворов солей менее активных металлов часто затруднено защитной пленкой на поверхности алюминия. Эта пленка быстро разрушается хлоридом меди, поэтому легко идет реакция 3CuCl 2 + 2Al ® 2AlCl 3 + 3Cu, которая сопровождается сильным разогревом. В крепких растворах щелочей алюминий легко растворяется с выделением водорода: 2Al + 6NaOH + 6Н 2 О ® 2Na 3 + 3H 2 (образуются и другие анионные гидроксо-комплексы). Амфотерный характер соединений алюминия проявляется также в легком растворении в щелочах его свежеосажденного оксида и гидроксида. Кристаллический оксид (корунд) весьма устойчив к действию кислот и щелочей. При сплавлении со щелочами образуются безводные алюминаты: Al 2 O 3 + 2NaOH ® 2NaAlO 2 + H 2 O. Алюминат магния Mg(AlO 2) 2 – полудрагоценный камень шпинель, обычно окрашенный примесями в самые разнообразные цвета.
Бурно протекает реакция алюминия с галогенами. Если в пробирку с 1 мл брома внести тонкую алюминиевую проволоку, то через короткое время алюминий загорается и горит ярким пламенем. Реакция смеси порошков алюминия и иода инициируется каплей воды (вода с иодом образует кислоту, которая разрушает оксидную пленку), после чего появляется яркое пламя с клубами фиолетовых паров иода. Галогениды алюминия в водных растворах имеют кислую реакцию из-за гидролиза: AlCl 3 + H 2 O Al(OH)Cl 2 + HCl.
Реакция алюминия с азотом идет только выше 800° С с образованием нитрида AlN, с серой – при 200° С (образуется сульфид Al 2 S 3), с фосфором – при 500° С (образуется фосфид AlP). При внесении в расплавленный алюминий бора образуются бориды состава AlB 2 и AlB 12 – тугоплавкие соединения, устойчивые к действию кислот. Гидрид (AlH) х (х = 1,2) образуется только в вакууме при низких температурах в реакции атомарного водорода с парами алюминия. Устойчивый в отсутствие влаги при комнатной температуре гидрид AlH 3 получают в растворе безводного эфира: AlCl 3 + LiH ® AlH 3 + 3LiCl. При избытке LiH образуется солеобразный алюмогидрид лития LiAlH 4 – очень сильный восстановитель, применяющийся в органических синтезах. Водой он мгновенно разлагается: LiAlH 4 + 4H 2 O ® LiOH + Al(OH) 3 + 4H 2 .
Получение алюминия.
Документально зафиксированное открытие алюминия произошло в 1825. Впервые этот металл получил датский физик Ганс Христиан Эрстед , когда выделил его при действии амальгамы калия на безводный хлорид алюминия (полученный при пропускании хлора через раскаленную смесь оксида алюминия с углем). Отогнав ртуть, Эрстед получил алюминий, правда, загрязненный примесями. В 1827 немецкий химик Фридрих Вёлер получил алюминий в виде порошка восстановлением гексафторалюмината калием:
Na 3 AlF 6 + 3K ® Al + 3NaF + 3KF. Позднее ему удалось получить алюминий в виде блестящих металлических шариков. В 1854 французский химик Анри Этьен Сент-Клер Девилль разработал первый промышленный способ получения алюминия – восстановлением расплава тетрахлоралюминиата натрием: NaAlCl 4 + 3Na ® Al + 4NaCl. Тем не менее, алюминий продолжал оставаться чрезвычайно редким и дорогим металлом; он стоил ненамного дешевле золота и в 1500 раз дороже железа (сейчас – только втрое). Из золота, алюминия и драгоценных камней была сделана в 1850-х погремушка для сына французского императора Наполеона III . Когда в 1855 на Всемирной выставке в Париже был выставлен большой слиток алюминия, полученный новым способом, на него смотрели, как на драгоценность. Из драгоценного алюминия сделали верхнюю часть (в виде пирамидки) памятника Вашингтону в столице США. В то время алюминий был ненамного дешевле серебра: в США, например, в 1856 он продавался по цене 12 долл. за фунт (454 г), а серебро – по 15 долл. В изданном в 1890 1-м томе знаменитого Энциклопедического словаря Брокгауза и Ефрона говорилось, что «алюминий до сих пор служит преимущественно для выделки... предметов роскоши». К тому времени во всем мире ежегодно добывалось всего 2,5 т. металла. Лишь к концу 19 в., когда был разработан электролитический способ получения алюминия, его ежегодное производство начало исчисляться тысячами тонн, а в 20 в. – млн. тонн. Это сделало алюминий из полудрагоценного широко доступным металлом.
Современный способ получения алюминия был открыт в 1886 молодым американским исследователем Чарлзом Мартином Холлом . Химией он увлекся еще в детстве. Найдя старый учебник химии своего отца, он начал усердно штудировать его, а также ставить опыты, однажды даже получил нагоняй от матери за порчу обеденной скатерти. А спустя 10 лет он сделал выдающееся открытие, прославившее его на весь мир.
Став в 16 лет студентом, Холл услышал от своего преподавателя, Ф.Ф.Джуэтта, что если кому-нибудь удастся разработать дешевый способ получения алюминия, то этот человек не только окажет огромную услугу человечеству, но и заработает огромное состояние. Джуэтт знал, что говорил: ранее он стажировался в Германии, работал у Вёлера, обсуждал с ним проблемы получения алюминия. С собой в Америку Джуэтт привез и образец редкого металла, который показал ученикам. Неожиданно Холл заявил во всеуслышание: «Я получу этот металл!»
Шесть лет продолжалась упорная работа. Холл пытался получать алюминий разными методами, но безуспешно. Наконец, он попробовал извлечь этот металл электролизом. В то время электростанций не было, ток приходилось получать с помощью больших самодельных батарей из угля, цинка, азотной и серной кислот. Холл работал в сарае, где устроил маленькую лабораторию. Ему помогала сестра Джулия, которая очень интересовалась опытами брата. Она сохранила все его письма и рабочие журналы, которые позволяют буквально по дням проследить историю открытия. Вот выдержка из ее воспоминаний:
«Чарлз всегда был в хорошем настроении, и даже в самые плохие дни был способен посмеяться над судьбой незадачливых изобретателей. В часы неудач он находил утешение за нашим стареньким пианино. В своей домашней лаборатории он работал по-многу часов без перерыва; а когда он мог ненадолго оставить установку, то мчался через весь наш длинный дом, чтобы немного поиграть... Я знала, что, играя с таким обаянием и чувством, он постоянно думает о своей работе. И музыка ему в этом помогала.»
Самым трудным было подобрать электролит и защитить алюминий от окисления. Через шесть месяцев изнурительного труда в тигле, наконец, появилось несколько маленьких серебристых шариков. Холл немедленно побежал к своему бывшему преподавателю, чтобы рассказать об успехе. «Профессор, я получил его!», – воскликнул он, протягивая руку: на ладони лежал десяток маленьких алюминиевых шариков. Это произошло 23 февраля 1886. А спустя ровно два месяца, 23 апреля того же года, француз Поль Эру взял патент на аналогичное изобретение, которое он сделал независимо и почти одновременно (поразительны и два других совпадения: и Холл, и Эру родились в 1863 и умерли в 1914).
Сейчас первые шарики алюминия, полученные Холлом, хранятся в Американской Алюминиевой компании в Питтсбурге как национальная реликвия, а в его колледже стоит памятник Холлу, отлитый из алюминия. Впоследствии Джуэтт писал: «Моим самым важным открытием было открытие человека. Это был Чарлз М.Холл, который в возрасте 21 года открыл способ восстановления алюминия из руды, и таким образом сделал алюминий тем замечательным металлом, которым теперь широко пользуются во всем мире». Пророчество Джуэтта сбылось: Холл получил широкое признание, стал почетным членом многих научных обществ. Но личная жизнь ему не удалась: невеста не хотела смириться с тем, что ее жених все время проводит в лаборатории, и расторгла помолвку. Холл нашел утешение в родном колледже, где он проработал до конца жизни. Как писал брат Чарлза, «колледж был для него и женой, и детьми, и всем остальным – всю его жизнь». Колледжу Холл завещал и б?льшую часть своего наследства – 5 млн. долл. Умер Холл от лейкемии в возрасте 51 года.
Метод Холла позволил получать с помощью электричества сравнительно недорогой алюминий в больших масштабах. Если с 1855 до 1890 было получено лишь 200 тонн алюминия, то за следующее десятилетие по методу Холла во всем мире получили уже 28 000 т этого металла! К 1930 мировое ежегодное производство алюминия достигло 300 тыс. тонн. Сейчас же ежегодно получают более 15 млн. т. алюминия. В специальных ваннах при температуре 960–970° С подвергают электролизу раствор глинозема (технический Al 2 O 3) в расплавленном криолите Na 3 AlF 6 , который частично добывают в виде минерала, а частично специально синтезируют. Жидкий алюминий накапливается на дне ванны (катод), кислород выделяется на угольных анодах, которые постепенно обгорают. При низком напряжении (около 4,5 В) электролизеры потребляют огромные токи – до 250 000 А! За сутки один электролизер дает около тонны алюминия. Производство требует больших затрат электроэнергии: на получение 1 тонны металла затрачивается 15000 киловатт-часов электроэнергии. Такое количество электричества потребляет большой 150-квартирный дом в течение целого месяца. Производство алюминия экологически опасно, так как атмосферный воздух загрязняется летучими соединениями фтора.
Применение алюминия.
Еще Д.И.Менделеев писал, что «металлический алюминий, обладая большою легкостью и прочностью и малою изменчивостью на воздухе, очень пригоден для некоторых изделий». Алюминий – один из самых распространенных и дешевых металлов. Без него трудно представить себе современную жизнь. Недаром алюминий называют металлом 20 века. Он хорошо поддается обработке: ковке, штамповке, прокату, волочению, прессованию. Чистый алюминий – довольно мягкий металл; из него делают электрические провода, детали конструкций, фольгу для пищевых продуктов, кухонную утварь и «серебряную» краску. Этот красивый и легкий металл широко используют в строительстве и авиационной технике. Алюминий очень хорошо отражает свет. Поэтому его используют для изготовления зеркал – методом напыления металла в вакууме.
В авиа- и машиностроении, при изготовлении строительных конструкций, используют значительно более твердые сплавы алюминия. Один из самых известных – сплав алюминия с медью и магнием (дуралюмин, или просто «дюраль»; название происходит от немецкого города Дюрена). Этот сплав после закалки приобретает особую твёрдость и становится примерно в 7 раз прочнее чистого алюминия. В то же время он почти втрое легче железа. Его получают, сплавляя алюминий с небольшими добавками меди, магния, марганца, кремния и железа. Широко распространены силумины – литейные сплавы алюминия с кремнием. Производятся также высокопрочные, криогенные (устойчивые к морозам) и жаропрочные сплавы. На изделия из алюминиевых сплавов легко наносятся защитные и декоративные покрытия. Легкость и прочность алюминиевых сплавов особенно пригодились в авиационной технике. Например, из сплава алюминия, магния и кремния делают винты вертолетов. Сравнительно дешевая алюминиевая бронза (до 11% Al) обладает высокими механическими свойствами, она устойчива в морской воде и даже в разбавленной соляной кислоте. Из алюминиевой бронзы в СССР с 1926 по 1957 чеканились монеты достоинством 1, 2, 3 и 5 копеек.
В настоящее время четвертая часть всего алюминия идет на нужды строительства, столько же потребляет транспортное машиностроение, примерно 17% часть расходуется на упаковочные материалы и консервные банки, 10% – в электротехнике.
Алюминий содержат также многие горючие и взрывчатые смеси. Алюмотол, литая смесь тринитротолуола с порошком алюминия, – одно из самых мощных промышленных взрывчатых веществ. Аммонал – взрывчатое вещество, состоящее из аммиачной селитры, тринитротолуола и порошка алюминия. Зажигательные составы содержат алюминий и окислитель – нитрат, перхлорат. Пиротехнические составы «Звездочки» также содержат порошкообразный алюминий.
Смесь порошка алюминия с оксидами металлов (термит) применяют для получения некоторых металлов и сплавов, для сварки рельсов, в зажигательных боеприпасах.
Алюминий нашел также практическое применение в качестве ракетного топлива. Для полного сжигания 1 кг алюминия требуется почти вчетверо меньше кислорода, чем для 1 кг керосина. Кроме того, алюминий может окисляться не только свободным кислородом, но и связанным, входящим в состав воды или углекислого газа. При «сгорании» алюминия в воде на 1 кг продуктов выделяется 8800 кДж; это в 1,8 раза меньше, чем при сгорании металла в чистом кислороде, но в 1,3 раза больше, чем при сгорании на воздухе. Значит, в качестве окислителя такого топлива можно использовать вместо опасных и дорогостоящих соединений простую воду. Идею использования алюминия в качестве горючего еще в 1924 предложил отечественный ученый и изобретатель Ф.А.Цандер. По его замыслу можно использовать алюминиевые элементы космического корабля в качестве дополнительного горючего. Этот смелый проект пока практически не осуществлен, зато большинство известных в настоящее время твердых ракетных топлив содержат металлический алюминий в виде тонкоизмельченного порошка. Добавление 15% алюминия к топливу может на тысячу градусов повысить температуру продуктов сгорания (с 2200 до 3200 К); заметно возрастает и скорость истечения продуктов сгорания из сопла двигателя – главный энергетический показатель, определяющий эффективность ракетного топлива. В этом плане конкуренцию алюминию могут составить только литий, бериллий и магний, но все они значительно дороже алюминия.
Широкое применение находят и соединения алюминия. Оксид алюминия – огнеупорный и абразивный (наждак) материал, сырье для получения керамики. Из него также делают лазерные материалы, подшипники для часов, ювелирные камни (искусственные рубины). Прокаленный оксид алюминия – адсорбент для очистки газов и жидкостей и катализатор ряда органических реакций. Безводный хлорид алюминия – катализатор в органическом синтезе (реакция Фриделя – Крафтса), исходное вещество для получения алюминия высокой чистоты. Сульфат алюминия применяют для очистки воды; реагируя с содержащимся в ней гидрокарбонатом кальция:
Al 2 (SO 4) 3 + 3Ca(HCO 3) 2 ® 2AlO(OH) + 3CaSO 4 + 6CO 2 + 2H 2 O, он образует хлопья оксида-гидроксида, которые, оседая, захватывают, а также сорбируют на поверхности находящиеся в воде взвешенные примеси и даже микроорганизмы. Кроме того, сульфат алюминия применяют как протраву при крашении тканей, для дубления кожи, консервирования древесины, проклеивания бумаги. Алюминат кальция – компонент вяжущих материалов, в том числе портландцемента. Иттрий-алюминиевый гранат (ИАГ) YAlO 3 – лазерный материал. Нитрид алюминия – огнеупорный материал для электропечей. Синтетические цеолиты (они относятся к алюмосиликатам) – адсорбенты в хроматографии и катализаторы. Алюминийорганические соединения (например, триэтилалюминий) – компоненты катализаторов Циглера – Натты, которые используются для синтеза полимеров, в том числе синтетического каучука высокого качества.
Илья Леенсон
Литература:
Тихонов В.Н. Аналитическая химия алюминия
. М., «Наука», 1971
Популярная библиотека химических элементов
. М., «Наука», 1983
Craig N.C. Charles Martin Hall and his Metall. J.Chem.Educ
. 1986, vol. 63, № 7
Kumar V., Milewski L. Charles Martin Hall and the Great Aluminium Revolution
. J.Chem.Educ., 1987, vol. 64, № 8
Профессия директор по развитию Должностные обязанности директора по региональному развитию
Курсовая работа: Ликвидность и платежеспособность предприятия, методы оценки и управления
Использование показателей логистической деятельности
Понятие и элементы логистического процесса
Должностная инструкция начальника участка автотранспорта Должностная инструкция начальника транспортного упаковочного цеха